302.AI API文档
  1. 组合接口
  • 语言大模型
    • 迁移API指南
    • 独家功能
      • 异步调用
        • 异步请求Chat
        • 异步获取结果
      • MCP调用
        • Chat(MCP调用)
      • 联网搜索
        • Chat(联网搜索)
      • 图片分析
        • Chat(图片分析)
      • 深度搜索
        • Chat(深度搜索)
      • 推理模式
        • Chat(推理模式)
      • 链接解析
        • Chat(链接解析)
      • 工具调用
        • Chat(工具调用)
      • 长期记忆(Beta)
        • Memobase
          • 用户管理
            • Create User(创建用户)
            • Get User(获取用户信息)
            • Update User(更新用户信息)
            • Delete User(删除用户)
          • 数据管理
            • Insert Data(插入数据)
            • Get Datas(获取数据列表)
            • Get Data(获取单个数据)
            • Delete Data(删除单个数据)
          • 记忆管理
            • Flush Buffer(生成记忆)
            • Get User Profile(获取记忆)
            • Delet User Profile(删除记忆)
            • Add User Profile
            • Update User Profile
          • 事件管理
            • Get User Recent Events
            • Search Events
            • Update User Event
            • Delete User Event
          • Prompt
            • Get User Personalized Context
        • Chat(长期记忆)
      • 简化版格式
        • Chat(简化版API)
      • Claude格式
        • Messages(Claude格式)
    • 列出模型
      • Models(列出模型)
      • Status(模型状态)
    • OpenAI
      • Chat(聊天)
      • Chat(流式返回)
      • Chat(分析图片)
      • Chat(结构化输出)
      • Chat(工具调用)
      • Chat(gpt-4o-plus 分析图片)
      • Chat(gpt-4o-plus 生成图片)
      • Chat(gpt-4o-image-generation 修改图片)
      • Chat(gpts模型)
      • Chat(chatgpt-4o-latest)
      • Chat(o1系列)
      • Chat(o3系列)
      • Chat(o4系列)
      • Chat(gpt-4o 语音模型)
      • Responses(聊天)
      • Responses(Deep-Research)
    • Anthropic
      • Chat(聊天)
      • Chat(分析图片)
      • Chat(函数调用)
      • Messages(原始格式)
      • Messages(函数调用)
      • Messages(思考模式)
      • Messages(128k输出)
      • Messages(Claude Code专用)
    • Gemini
      • 官方格式
        • v1beta(官方格式-聊天)
        • v1beta(官方格式-文生图)
        • v1beta(官方格式-图片编辑)
      • Chat(聊天)
      • Chat(分析图片)
      • Chat(图片生成)
    • 国产模型
      • Chat(文心一言)
      • Chat(通义千问)
      • Chat(通义千问多模态)
      • Chat(通义千问-OCR)
      • Chat(智谱GLM)
      • Chat(智谱GLM多模态)
      • Chat(百川AI)
      • Chat(月之暗面)
      • Chat(月之暗面多模态)
      • Chat(零一万物)
      • Chat(零一万物多模态)
      • Chat(讯飞星火)
      • Chat(Deepseek)
      • Chat(Deepseek多模态)
      • Chat(阶跃星辰)
      • Chat(阶跃星辰多模态)
      • Chat(字节豆包)
      • Chat(字节豆包多模态)
      • Chat(字节豆包图片生成)
      • Chat(商汤日日新)
      • Chat(Minimax)
      • Chat(腾讯混元)
    • 硅基流动
      • Chat(硅基流动)
    • PPIO派欧云
      • Chat(PPIO派欧云)
    • SophNet
      • Chat(SophNet)
    • 开源模型
      • Chat(LLaMA4)
      • Chat(LLaMA3.3)
      • Chat(LLaMA3.2多模态)
      • Chat(LLaMA3.1)
      • Chat(Mistral)
      • Chat(Pixtral-Large-2411多模态)
      • Chat(Gemma-7B、Gemma-3-27b-it)
      • Chat(Gemma2-9B)
      • Chat(Command R+)
      • Chat(Qwen2)
      • Chat(Qwen2.5)
      • Chat(Qwen2.5-VL)
      • Chat(Qwen3)
      • Chat(Llama-3.1-nemotron)
      • Chat(QwQ-32B、QwQ-Plus、QwQ-32B-Preview)
      • Chat(LongCat-Flash-Chat)
    • 专业模型
      • Chat(WiseDiag医学模型)
      • Chat(轩辕金融模型)
      • Chat(法睿法律模型)
      • Chat(阿里数学模型)
      • Chat(Perplexity搜索)
      • Chat(阿里通义翻译模型)
    • 其他模型
      • Chat(grok)
      • Chat(grok-2-vision)
      • Chat(Nova)
      • Chat(v0)
      • Chat(UniFuncs深度调研)
      • 异步获取结果
  • 图片生成
    • 统一接口
      • 说明
      • 302格式(V2版本)
        • 图片同步生成(302格式)
        • 图片异步生成(302格式)
        • 异步获取图片生成结果
        • webhook请求数据示例
      • 302格式(V1版本)
        • 图片生成(302格式)
      • OpenAI格式
        • 图片生成(OpenAI格式)
        • 图片编辑(OpenAI格式)
    • GPT-Image-1
      • Generations(生成图片)
      • Edits(修改图片)
      • 异步获取图片
    • DALL.E
      • Generations(DALL·E 3和DALL·E 2)
      • Edits(DALL·E 2)
      • Variations(DALL·E 2)
    • Stability.ai
      • Text-to-image(图片生成-V1)
      • Generate(图片生成-SD2)
      • Generate(图片生成-SD3-Ultra)
      • Generate(图片生成-SD3)
      • Generate(图片生成-SD3.5-Large)
      • Generate(图片生成-SD3.5-Medium)
      • Generate(图生图-SD3)
      • Generate(图生图-SD3.5-Large)
      • Generate(图生图-SD3.5-Medium)
    • Midjourney
      • Imagine(绘画)
      • Action(修改)
      • Blend(混图)
      • Describe(描述图片)
      • Modal(局部重绘)
      • Edits(提交编辑)
      • Fetch(获取任务)
      • Cancel(取消任务)
    • Midjourney-Relax
      • Imagine(绘画)
      • Action(修改)
      • Blend(混图)
      • Describe(描述图片)
      • Modal(局部重绘)
      • Fetch(获取任务)
      • Cancel(取消任务)
    • Midjourney-Turbo
      • Imagine(绘画)
      • Action(修改)
      • Blend(混图)
      • Describe(描述图片)
      • Modal(局部重绘)
      • MJ-Video(图片生成视频)
      • MJ-Video(视频延长)
      • Fetch(获取任务)
      • Cancel(取消任务)
    • 302.AI
      • SDXL(图片生成)
      • SDXL-Lora(图片生成-Lora)
      • SDXL-Lightning(快速图片生成)
      • SDXL-Lightning-V2(快速图片生成V2)
      • SD3(图片生成-SD3)
      • Aura-Flow(图片生成)
      • Kolors(图片生成-可灵)
      • Kolors(参考图片生成-可灵)
      • QRCode(艺术二维码生成)
      • Lora(图片生成-Lora)
      • Lora(获取任务结果)
      • SD-3.5-Large(图片生成)
      • SD-3.5-Large-Turbo(图片生成)
      • SD-3.5-Medium(图片生成)
      • Lumina-Image-V2(图片生成)
      • Playground-v25(图片生成)
      • Omnigen-V1(图片生成)
      • Qwen-Image(图片生成)
      • Qwen-Image-Lora(Lora图片生成)
      • Qwen-Image-Lora-Trainer(训练Lora)
      • Qwen-Image-Lora-Trainer(异步获取结果) Copy
    • Glif
      • Glif(Claude+SD3)
      • Glif(文字生成贴纸)
      • Glif(文字生成涂鸦)
      • Glif(文字生成Wojak漫画)
      • Glif(文字生成乐高)
    • Flux
      • 官方API
        • Generate(生成图片)
        • Finetune(微调)
        • Result(查询任务)
      • Flux-Ultra-v1.1(图片生成v1.1)
      • Flux-Pro-v1.1(图片生成v1.1)
      • Flux-Pro(图片生成)
      • Flux-Dev(图片生成)
      • Flux-Schnell(图片生成)
      • Flux-Realism(超真实Lora)
      • Flux-Lora(自定义Lora)
      • Flux-General(高级自定义)
      • Flux-General-Inpainting(高级自定义)
      • Flux-Lora-Training(训练Lora)
      • Flux-Lora-Training(异步获取结果)
      • Flux-1-Krea(图片生成)
      • Flux-1-Krea-Redux(以图生图)
      • Flux-1-SRPO(图片生成)
    • Ideogram
      • Generate(主体参考)
      • Generate(文字生成图片V3)
      • Generate(文字生成图片)
    • Recraft
      • Recraft-V3(图片生成)
      • Create-Style(自定义风格)
      • Recraft-20B(图片生成)
    • Luma
      • Luma-Photon(图片生成)
      • Luma-Photon-Flash(快速图片生成)
    • Doubao即梦
      • Generations(Seedream 4.0)
      • Generations(Seedream 3.0)
      • Generations(SeedEdit 3.0)
      • Drawing(即梦图片生成)
    • Google
      • gemini-2.5-flash-image-preview(原版格式-文生图)
      • gemini-2.5-flash-image-preview(原版格式-图片编辑)
      • gemini-2.5-flash-image-preview(按次收费-文生图)
      • gemini-2.5-flash-image-preview-edit(按次收费-图片编辑)
      • gemini-2.5-flash-image-preview(异步按次收费-文生图)
      • gemini-2.5-flash-image-preview-edit(异步按次收费-图片编辑)
      • gemini-2.5-flash-image-preview(异步获取结果)
      • Imagen-4-Preview-Ultra(图片生成)
      • Imagen-4-Preview-Fast(图片生成)
      • Imagen-4-Preview (图片生成)
      • Imagen-3 (图片生成)
      • Imagen-3-Fast(图片生成)
    • Minimax海螺
      • image(文字生成图片)
    • 智谱
      • image(文字生成图片)
    • Baidu百度
      • iRAG(文字生成图片)
    • Hidream
      • Hidream-i1-full(高级版)
      • Hidream-i1-dev(中级版)
      • Hidream-i1-fast(入门版)
    • Bagel
      • Bagel(图片生成)
    • 硅基流动
      • 创建图片生成请求
    • Higgsfield
      • 官方格式
        • Soul(文字生成图片)
        • Fetch(获取任务结果)
        • Styles(获取风格列表)
      • Soul(文字生图片)
      • Character(生成角色)
      • Apps(图片生成图片)
      • Fetch(获取任务结果)
    • Kling可灵
      • Images-Generations(生成图像)
      • Fetch(获取生成图像任务结果)
      • Multi-image2image(多图参考生图)
      • Multi-image2image(获取任务)
    • 通义万相
      • Wan-T2I(文字生图片阿里云)
      • Qwen-Image(阿里云部署)
      • Tasks(获取任务结果)
    • Vidu
      • Reference2Image(参考生图)
      • Fetch V2(获取任务结果)
  • 图片处理
    • 302.AI-ComfyUI
      • 创建换装任务
      • 创建换装任务(上传遮罩)
      • 查询换装任务状态
      • 创建换脸任务
      • 查询换脸任务状态
      • 创建换任意物品任务
      • 创建换任意物品任务(上传遮罩)
      • 查询换任意物品任务状态
      • 创建漫画人物变真人任务
      • 查询漫画人物变真人任务状态
      • 创建风格迁移任务
      • 查询风格迁移任务状态
      • 创建图片消除任务
      • 查询图片消除任务状态
      • 创建视频换脸任务
      • 查询视频换脸任务状态
      • 创建视频换脸任务(V2)
      • 查询视频换脸任务状态(V2)
    • 302.AI
      • Upscale(图片放大)
      • Upscale-V2(图片放大V2)
      • Upscale-V3(图片放大V3)
      • Upscale-V4(图片放大V4)
      • Super-Upscale(超级图片放大)
      • Super-Upscale-V2(超级图片放大V2)
      • Face-upscale(人像照片放大)
      • Colorize(黑白照片上色)
      • Colorize(黑白照片上色V2)
      • Removebg(背景消除)
      • Removebg-V2(背景消除V2)
      • Removebg-V3(背景消除V3)
      • Inpaint(图片修改)
      • Erase(物体消除)
      • Face-to-many(人像照片风格化)
      • Llava(图像识别)
      • Relight(二次打光)
      • Relight-background(二次打光背景合成)
      • Relight-V2(二次打光-V2)
      • Face-swap-V2(AI换脸V2)
      • Fetch(获取任务结果)
      • HtmltoPng(HTML转PNG格式)
      • SvgToPng(SVG转PNG格式)
      • image-translate(图片翻译)
      • image-translate-query(图片翻译结果)
      • image-translate-redo(图片翻译修改)
      • Flux-selfie(自拍照片风格化)
      • Trellis(图片转3D模型)
      • Pose-Transfer(人物姿态变换)
      • Pose-Transfer(人物姿态变换结果)
      • Virtual-Tryon(虚拟穿衣)
      • Virtual-Tryon(虚拟穿衣结果)
      • Denoise(AI降噪)
      • Deblur(AI去模糊)
      • SAM(AI生成MASK图)
      • Retouch(人物美颜)
      • Moondream2(图片提示词生成)
      • Image_Merge(图片拼接)
      • Qwen-Image-Edit(图片修改)
      • Virtual-Tryon(虚拟穿衣V2)
      • Qwen-Image-Edit-Plus(图片修改)
      • Qwen-Image-Edit-Plus(图片修改结果)
      • 在线html链接转成图片
    • Vectorizer
      • vectorize(矢量化)
    • Stability.ai
      • Fast Upscale(快速图片放大)
      • Creative Upscale(创意图片放大)
      • Conservative Upscale(保守图片放大)
      • Fetch Creative Upscale(超级图片放大)
      • Erase(物体消除)
      • Inpaint(图片修改)
      • Outpaint(图片扩展)
      • Search-and-replace(内容替换)
      • Search-and-recolor(内容重着色)
      • Remove-background(背景消除)
      • Sketch(草图转图片)
      • Structure(以图生图)
      • Style(风格一致性)
      • Style-Transfer(风格迁移)
      • Replace-Background(更换背景)
      • Stable-Fast-3D(图片转3D模型)
      • Stable-Point-3D(图片转3D模型新版)
    • Glif
      • Glif(人物照片风格化)
      • Glif(照片转化成雕塑)
      • Glif(照片像素化)
      • Glif(logo材质化)
      • Glif(图片生成GIF)
    • Clipdrop
      • Cleanup(物体消除)
      • Upscale(AI放大)
      • Remove-background(背景消除)
      • Uncrop(图像扩展)
    • Recraft
      • Vectorize Image(矢量化图片)
      • Remove Background(背景消除)
      • Clarity Upscale(图片放大)
      • Generative Upscale(图片创意放大)
    • BRIA
      • Remove Background(背景消除)
      • Blur Background(背景模糊)
      • Generate Background(背景生成)
      • Erase Foreground(擦除前景)
      • Eraser(物体擦除)
      • Expand Image(图片扩展)
      • Increase Resolution(图片放大)
      • Crop(图片裁切)
      • Cutout(产品图裁剪)
      • Packshot(产品图特写)
      • Shadow (产品图阴影)
      • Scene (产品图场景生成)
      • Caption(图片描述)
      • Register(图片上传)
      • Mask(图片分割)
      • Presenter info (人脸分析)
      • Modify Presenter(人脸修改)
      • Delayer Image(图片转PSD)
    • Flux
      • 官方API
        • Generate(修改图片)
        • Result(查询任务)
      • Flux-V1.1-Ultra-Redux(以图生图-Ultra)
      • Flux-V1.1-Pro-Redux(以图生图-Pro)
      • Flux-Dev-Redux(以图生图-Dev)
      • Flux-Schnell-Redux(以图生图-Schnell)
      • Flux-V1-Pro-Canny(物体一致性)
      • Flux-V1-Pro-Depth(深度一致性)
      • Flux-V1-Pro-Fill(局部重绘)
      • Flux-Kontext-Pro(图片编辑)
      • Flux-Kontext-Max(图片编辑)
      • Flux-Kontext-Dev(图片编辑)
    • Hyper3D
      • Hyper3d-Rodin(生成3D模型)
      • Hyper3d-Rodin(获取任务结果)
    • Tripo3D
      • Task(任务提交)
      • Upload(图片上传)
      • Fetch(获取结果)
    • FASHN
      • Fashn-Tryon(虚拟穿衣)
      • Fashn-Tryon(虚拟穿衣v1.5)
    • Ideogram
      • Edit(主体参考)
      • Remix(主体参考)
      • Edit(图片修改V3)
      • Remix(以图生图V3)
      • Reframe(图片扩展V3)
      • Replace Background(背景替换V3)
      • Remix(以图生图)
      • Upscale(图片放大)
      • Describe(图片描述)
      • Edit(图片修改)
    • Doubao即梦
      • SeedEdit_v3.0(图片指令编辑)
      • SeedEdit_v3.0(结果获取)
      • Portrait(人像写真)
      • Portrait(结果获取)
      • SeedEdit(图片指令编辑)
      • Character(角色特征保持)
    • Kling可灵
      • Virtual-Try-On(虚拟试穿)
      • Fetch(获取任务结果)
      • Images-expand(扩图)
      • Fetch(获取扩图任务结果)
    • 阶跃星辰
      • Step1x-Edit(图片修改)
    • Bagel
      • Bagel-Edit(图片编辑)
    • 共绩算力
      • Flux Dev
        • 创建文生图任务
        • 查看文生图任务
      • Flux Kontext Dev
        • 创建图片编辑任务
        • 查看图片编辑任务
        • 创建lora图片编辑任务
        • 查看lora图片编辑任务
      • Face Swapper
        • 创建换脸任务
        • 查看换脸任务
      • Clothes Changer
        • 创建无遮罩换装任务
        • 查看无遮罩换装任务
        • 创建有遮罩换装任务
        • 查看有遮罩换装任务
      • Anything Changer
        • 创建无遮罩换任意物品任务
        • 查看无遮罩换任意物品任务
        • 创建有遮罩换任意物品任务
        • 查看有遮罩换任意物品任务
      • Image2Reality
        • 创建动漫任务变真人任务
        • 查看动漫任务变真人任务
      • Style Transfer
        • 创建风格迁移任务
        • 查看风格迁移任务
      • Video Face Swapper
        • 创建视频换脸任务
        • 查看视频换脸任务
      • Image Eliminater
        • 创建图片消除任务
        • 查看图片消除任务
    • Hunyuan3D
      • Hunyuan3d-v21(生成3D模型)
      • Hunyuan3d-v21(获取任务结果)
    • Hidream
      • Hidream-E1(图片修改)
    • 通义万相
      • Wan2.5-i2i-Preview(图像编辑)
      • Wanx2.1-ImageEdit(图像编辑)
      • Qwen-Image-Edit(阿里云部署)
      • Qwen-MT-Image(图像翻译)
      • Tasks(获取任务结果)
    • Topazlabs
      • 锐化
      • 增强
      • 降噪
      • 修复
      • 打光
      • 获取任务结果
      • 下载
  • 视频生成
    • 统一接口
      • V2版本
        • 创建视频生成任务
        • 获取视频任务信息
        • 生成成功时webhook请求示例
      • V1版本
        • 创建视频生成任务
        • 获取视频任务信息
    • 302.AI
      • Image-to-video(图片转视频)
      • Live-portrait(人像转视频)
      • Video-To-Video(视频风格迁移)
      • Fetch(获取视频结果)
      • Latentsync(开源数字人)
      • Latentsync(获取任务结果)
      • Upscale-Video(视频高清化)
      • Upscale-Video(获取视频结果)
      • Stable-Avatar(开源数字人)
      • Stable-Avatar(获取任务结果)
      • Wan-2.2-i2v-fast(Wan2.2快速版)
      • Wan-2.2-i2v-fast(获取视频结果)
    • Stable Diffusion
      • Image-to-video(图片生成视频)
      • Fetch Image-to-video(图片生成视频)
    • Luma AI
      • Submit(文字/图片生成视频)
      • Extend(视频扩展)
      • Fetch(获取任务结果)
      • Video2audio(视频生成音频)
    • Runway
      • Submit(文字生成视频)
      • Submit(图片生成视频 Gen-3)
      • Submit(图片生成视频 Gen-3-Turbo)
      • Submit(图片生成视频 Gen4)
      • Submit(图片生成视频 Gen4-Turbo)
      • Submit(视频生成视频)
      • Submit(视频快速生成视频)
      • Act-two(视频风格迁移)
      • Submit(视频扩展)
      • Aleph(视频编辑)
      • Fetch(获取任务结果)
    • Kling可灵
      • 302格式
        • 图生视频
          • Image2Video(图生视频1.0-快速-5秒)
          • Image2Video(图生视频1.0-快速-10秒)
          • Image2Video(图生视频1.5-快速-5秒)
          • Image2Video_HQ(图生视频1.5-高清-5秒)
          • Image2Video(图生视频1.5-快速-10秒)
          • Image2Video_HQ(图生视频1.5-高清-10秒)
          • Image2Video(图生视频1.6-标准-5秒)
          • Image2Video(图生视频1.6-标准-10秒)
          • Image2Video(图生视频1.6-高清-5秒)
          • Image2Video(图生视频1.6-高清-10秒)
          • Image2Video(图生视频2.0-高清-5秒)
          • Image2Video(图生视频2.0-高清-10秒)
          • Image2Video(图生视频2.1-5秒)
          • Image2Video(图生视频2.1-10秒)
          • Image2Video(图生视频2.1-高清-5秒)
          • Image2Video(图生视频2.1-高清-10秒)
          • Image2Video(图生视频2.1-大师版-5秒)
          • Image2Video(图生视频2.1-大师版-10秒)
          • Image2Video(多图参考)
          • Image2Video(图生视频2.5-turbo版-5秒)
          • Image2Video(图生视频2.5-turbo版-10秒)
        • 文生视频
          • Txt2Video(文生视频1.0-快速-5秒)
          • Txt2Video_HQ(文生视频1.5-高清-5秒)
          • Txt2Video_HQ(文生视频1.5-高清-10秒)
          • Txt2Video(文生视频1.6-标准-5秒)
          • Txt2Video(文生视频1.6-标准-10秒)
          • Txt2Video(文生视频1.6-高清-5秒)
          • Txt2Video(文生视频1.6-高清-10秒)
          • Txt2Video(文生视频2.0-高清-5秒)
          • Txt2Video(文生视频2.1-大师版-5秒)
          • Txt2Video(文生视频2.1-大师版-10秒)
          • Txt2Video(文生视频2.5-turbo版-5秒)
          • Txt2Video(文生视频2.5-turbo版-10秒)
        • Extend_Video(视频扩展)
        • Fetch(获取任务结果)
      • 官方格式
        • Text2video(文生视频 官方API)
        • Text2video(文生视频获取任务结果)
        • Image2video(图生视频 官方API)
        • Image2video(图生视频获取任务结果)
        • MultiImage2Video(多图参考)
        • MultiImage2Video(多图生视频获取任务结果)
        • Effects(视频特效 官方API)
        • Effects(视频特效获取任务结果)
    • CogVideoX智谱
      • Generations(文字生成视频)
      • Generations(图片生成视频)
      • Generations(首尾帧生成视频)
      • Result(获取任务结果)
    • Minimax海螺
      • 视频模板提示词
      • Video(文字生成视频)
      • Video(图片生成视频)
      • Video(主体参照生成视频)
      • Video(运镜控制)
      • Video(MiniMax-Hailuo-02)
      • Query(任务查询)
      • Files(视频下载)
    • Pika
      • 1.5 pikaffects(图生成视频)
      • Turbo Generate(文字生成视频)
      • Turbo Generate(图生成视频)
      • 2.1 Generate(文字生成视频)
      • 2.1 Generate(图生成视频)
      • 2.2 Generate(文字生成视频)
      • 2.2 Generate(图生成视频)
      • 2.2 Pikascenes(生成场景视频)
      • Fetch(获取任务结果)
    • PixVerse
      • Pixverse特效ID
      • Pixverse音色ID
      • Generate(文字生成视频)
      • Generate(图片生成视频)
      • Generate(多主体参考)
      • Fetch(获取任务结果)
      • Lipsync(对口型提交任务)
      • Lipsync(对口型获取任务结果)
    • Genmo
      • Mochi-v1(文字生成视频)
      • Mochi-v1(获取任务结果)
    • Hedra
      • 2.0
        • Audio(音频上传)
        • Portrait(人像上传)
        • Characters(口型合成)
        • Fetch(获取任务结果)
      • 3.0
        • List Models(获取模型列表)
        • Create Asset(资源创建)
        • Upload Asset(资源上传)
        • Generate Asset(资源合成)
        • Get Status(获取资源合成结果)
    • Haiper
      • Haiper(文字生成视频)
      • Haiper(图片生成视频)
      • Haiper(文字生成视频V2.5)
      • Haiper(图片生成视频V2.5)
      • Haiper(获取任务结果)
    • Sync.
      • Generate(口型匹配)
      • Fetch(获取任务结果)
    • Lightricks
      • Ltx-Video(文字生成视频)
      • Ltx-Video-I2V(图片生成视频)
      • Ltx-Video-v095(文字生成视频)
      • Ltx-Video-v095-I2V(图片生成视频)
    • Hunyuan混元
      • Hunyuan(文字生成视频)
      • Hunyuan(获取任务结果)
    • Vidu
      • Vidu(文字生成视频)
      • Vidu(图片生成视频)
      • Vidu(首尾帧生成视频)
      • Vidu(参考主体生成视频)
      • Vidu(生成场景视频)
      • Vidu(智能超清)
      • Fetch(获取任务结果)
      • Vidu V2(文字生成视频)
      • Vidu V2(图片生成视频)
      • Vidu V2(首尾帧生成视频)
      • Vidu V2(参考主体生成视频)
      • Vidu V2(生成场景视频)
      • Vidu V2(智能超清-尊享)
      • Fetch V2(获取任务结果)
    • 通义万相
      • wan2.2-animate-move(动作生成)
      • wan2.2-animate-mix(视频换人)
      • wan2.2-s2v(数字人生成)
      • T2V(文字生成视频阿里云)
      • I2V(图生成视频阿里云)
      • Tasks(获取任务结果)
      • wan-t2v(文字生成视频开源版)
      • wan2.2-a14b-t2v(文字生成视频)
      • wan2.2-5b-t2v(文字生成视频)
      • wan2.2-5b-i2v(图片生成视频)
      • wan2.2-a14b-i2v(图片生成视频)
      • wan-i2v(图片生成视频开源版)
      • wan-vace(视频编辑)
      • wan-t2v(获取任务结果)
      • wan2.2-a14b-t2v(获取任务结果)
      • wan2.2-a14b-i2v(获取任务结果)
      • wan2.2-5b-t2v(获取任务结果)
      • wan2.2-5b-i2v(获取任务结果)
      • wan-i2v(获取任务结果)
      • wan-vace(获取任务结果)
    • 即梦
      • Seaweed(文/图生成视频)
      • Seaweed(获取任务结果)
      • Seedance(文/图生视频)
      • Seedance(首尾帧生视频)
      • Seedance(参考生视频)
      • Seedance(获取任务结果)
      • Omnihuman(提交任务)
      • Omnihuman(获取任务结果)
    • 硅基流动
      • Video(生成视频)
      • Tasks(获取任务结果)
    • Google
      • Veo3-V2(V2版本API格式)
      • 获取结果(V2版本API格式)
      • Veo3-Fast(文字生成视频)
      • Veo3-Fast(获取任务结果)
      • Veo3-Fast-Frames(图文生成视频)
      • Veo3-Fast-Frames(获取任务结果)
      • Veo3-Pro(文字生成视频)
      • Veo3-Pro(获取任务结果)
      • Veo3-Pro-Frames(图文生成视频)
      • Veo3-Pro-Frames(获取任务结果)
      • Veo3(文字生成视频)
      • Veo3(获取任务结果)
      • Veo2(文字生成视频)
      • Veo2-i2v(图片生成视频)
      • Veo2(获取任务结果)
    • 昆仑万维
      • Skyreels(图片生成视频)
      • Skyreels(获取任务结果)
    • Higgsfield
      • 图片生成视频模板
      • 官方格式
        • Motions(获取模板列表)
        • Generate(官方图片生成视频)
        • Speak(数字人生成)
        • Fetch(获取任务结果)
      • Generate(图片生成视频)
      • Shortads(图片生成广告视频)
      • Apps(图片生成视频)
      • Fetch(获取任务结果)
    • 蝉镜数字人
      • 创建视频合成任务
      • 获取视频详情
      • 视频删除
      • 获取支持的字体列表
      • 生成数字人形象
      • 拉取形象详情
      • 删除形象
      • 公共数字人列表
    • Midjourney
      • MJ-Video(图片生成视频)
      • MJ-Video(视频延长)
      • Fetch(获取任务)
    • Topview
      • 营销数字人
        • 提交Avatar Marketing Video
        • 获取Avatar Marketing Video结果
        • 获取脚本列表
        • 修改脚本内容
      • 普通数字人
        • VideoAvatar 提交
        • VideoAvatar 查询
        • 制定私有数字人
        • 查询私有数字人
        • 删除私有数字人
        • 查询公共数字人
        • 查询公共音色
        • 查询字幕样式接口
      • 商品数字人
        • Product ImageReplace 提交
        • Product ImageReplace 查询
        • Product Image2Video 提交
        • Product Image2Video 查询
        • 查询公共数字人
        • 查询商品类别
      • 商品图替换
        • productAnyShoot ReplaceImage 提交
        • productAnyShoot ReplaceImage 查询
        • 查询模板列表
        • 查询模板分类
      • 图生视频
        • 提交Image2video(图生视频)
        • 查询Image2video(图生视频)
      • Avatar 4
        • 提交数字人生成任务
        • 获取数字人生成任务结果
        • 查询字幕样式接口
        • 查询公共音色
        • 查询可用的数字人列表
        • 查询数字人分类列表
        • 创建自定义数字人
        • 删除自定义数字人
        • 创建文字转语音任务
        • 查询文字转语音任务
      • 上传接口
    • Viggle
      • 创建角色
  • 音视频处理
    • 统一接口
      • TTS
        • 302格式(V2版本)
          • 文本生成语音(302格式)
          • 查询TTS任务
          • webhook请求数据示例
        • 302格式(V1版本)
          • 文本生成语音(302格式)
        • OpenAI格式
          • 文本生成语音(openai格式)
        • 查询TTS供应商信息
    • 302.AI
      • Higgs Audio
        • 创建声音克隆任务
        • 查看声音克隆任务
        • 创建智能声音生成任务
        • 查看智能声音生成任务
      • IndexTTS-2
        • 创建TTS任务
        • 查询任务
      • F5-TTS
        • F5-TTS (文字转语音)
        • F5-TTS (异步文字转语音)
        • F5-TTS (异步获取结果)
      • MMAudio
        • mmaudio(文字生成配音)
        • mmaudio(视频AI配音)
        • mmaudio (异步获取结果)
      • Transcriptions(语音转文字)
      • Transcript(音视频转字幕)
      • Alignments(字幕打轴)
      • WhisperX(语音转文字)
      • Stable-Audio(纯音乐生成)
      • Diffrhythm(歌曲生成)
      • Video-Understanding(视频理解)
      • Video-Understanding (异步获取结果)
    • OpenAI
      • Speech(文字转语音)
      • Transcriptions(语音转文字)
      • Translations(语音翻译英文)
      • Realtime(实时语音对话)
    • Azure
      • AzureTTS(微软云文字转语音)
      • Voice-List(声音列表)
    • Suno
      • Music(Suno全自动模式)
      • Music(Suno自定义模式)
      • Music(Suno生成歌词)
      • Music(Suno歌曲续写)
      • Fetch(Suno查询任务)
      • 上传音乐
      • 歌曲拼接
      • 新建 Persona
      • 声曲分离
    • 豆包
      • tts_hd(文字转语音)
      • vc(音视频字幕生成)
      • fetch(查询音视频字幕结果)
      • vc-ata(自动字幕打轴)
      • fetch(查询字幕打轴结果)
      • Recognize(录音文件极速识别)
      • 播客API-websocket-v3协议
    • Fish Audio
      • TTS(文字转声音)
      • Model(创建声音模型)
      • Model(获取声音模型)
      • Model(删除声音模型)
      • Model(更新声音模型)
      • Model(获取声音列表)
    • Minimax
      • T2A(语音生成-同步)
      • T2A(语音生成-异步)
      • T2A(语音生成-状态查询)
      • T2V(文生音色)
      • Files(音频文件下载)
      • Music-Generation(生成新音乐)
      • Upload(音色上传)
      • Voice-Clone(音色复刻)
    • Dubbingx
      • TTS(文字转语音)
      • GetTTSList(获取音色列表)
      • GetTTSTask(获取任务状态)
      • Analyze(分析情绪)
    • Udio
      • Generate(生成音乐)
      • Generate(音乐续写)
      • Query(查询任务)
    • Elevenlabs
      • 302格式
        • Speech-to-text(语音转文字)
        • Speech-to-text(异步获取结果)
        • TTS-Multilingual-v2(文字转语音同步)
        • TTS-Multilingual-v2(文字转语音异步)
        • TTS-Multilingual-v2(异步获取结果)
        • TTS-Flash-v2.5(文字转语音同步)
        • TTS-Flash-v2.5(文字转语音异步)
        • TTS-Flash-v2.5(异步获取结果)
      • 官方格式
        • Speech-to-text(语音转文字)
        • Text-to-speech(文字转语音)
        • Text-to-Dialogue(创建多人对话)
        • Music(音乐生成)
        • Music(音乐生成详情)
        • Plan(创建作曲详情)
        • Models(获取模型)
        • Voices(获取声音)
    • Mureka
      • 上传音乐
      • 根据提示生成歌词
      • 继续从现有歌词写歌词
      • 根据歌词生成歌曲
      • 获取生成的歌曲
      • 分离音乐的音轨
      • 生成纯音乐曲目
      • 获取纯音乐曲目
      • 文字转语音
      • 创建播客音频
    • 硅基流动
      • 上传参考音频
      • 删除参考音频
      • 创建语音转文本请求
      • FunAudioLLM/CosyVoice2-0.5B文本转语音
      • fnlp/MOSS-TTSD-v0.5文本转语音
    • Google
      • Text-to-Speech
      • gemini-2.5-flash-preview-tts
      • gemini-2.5-pro-preview-tts
    • 蝉镜数字人
      • 创建语言生成任务
      • 获取语音合成结果
      • 创建声音定制任务
      • 获取声音定制结果
      • 删除定制声音
    • Mistral
      • Transcriptions(语音转文字)
    • Kling可灵
      • Video-to-audio(视频生音效)
      • Video-to-audio(获取任务结果)
      • Text-to-audio(文生音效)
      • Text-to-audio (获取任务结果)
    • 通义万相
      • Qwen3-TTS-Flash(语音合成)
      • Qwen-TTS(语音合成)
      • 声音复刻
      • 删除声音
    • Topazlabs
      • 视频高清化
      • 获取任务结果
    • Stability
      • Text-to-Audio(文字生成音乐)
      • Audio-to-Audio(参考生成音乐)
      • Inpaint(音乐修改)
  • 信息处理
    • 统一搜索接口
      • 统一搜索接口
    • 302.AI
      • 管理后台
        • Balance(账户余额)
        • Record(扣费详情)
        • Price(获取API的价格)
        • 获取用户 API Keys 列表数据
        • 获取指定 API Key 的数据
        • 创建 API Key
        • 更新 API Key
        • 删除 API Key
      • 信息搜索
        • Xiaohongshu_Search(小红书搜索笔记)
        • Xiaohongshu_Search(小红书搜索笔记V2)
        • Xiaohongshu_Search(小红书搜索笔记V3)
        • Xiaohongshu_Note(小红书获取笔记)
        • Xiaohongshu_Note(小红书获取笔记V2)
        • Xiaohongshu_Note(小红书获取笔记V3)
        • Xiaohongshu_Comments(小红书获取笔记评论)
        • Tiktok_Search(Tiktok搜索视频)
        • Douyin_Search(抖音搜索视频)
        • Twitter_Search(X搜索内容)
        • Twitter_Post(X获取用户帖子)
        • Twitter_User(X获取用户信息)
        • Weibo_Post(微博获取用户帖子)
        • Search_Video(Youtube搜索视频)
        • Youtube_Info(Youtube获取视频信息)
        • Youtube_Subtitles(Youtube获取字幕)
        • Bilibili_Info(B站获取视频信息)
        • MP_Article_List(获取微信公众号文章列表)
        • MP_Article(获取微信公众号文章)
        • Zhihu_AI_Search(知乎AI搜索)
        • Zhihu_AI_Search(获取知乎AI搜索结果)
        • Zhihu_Hot_List(知乎热榜)
        • Video_Data(获取视频数据)
      • 文件处理
        • Parsing(文件解析)
        • Upload-File(文件上传)
        • Markitdown(文件转换为md格式)
      • 代码运行
        • 虚拟机沙盒
          • 一键运行代码
          • 创建沙盒
          • 查询自己的沙盒列表
          • 摧毁沙盒
          • 运行代码
          • 运行命令行
          • 查询指定路径下的文件信息
          • 往沙盒里导入文件数据
          • 导出沙盒文件
        • 静态沙盒
          • Run-Code(代码执行器)
        • E2B SDK调用
          • python示例代码
      • 远程浏览器
        • 异步创建浏览器自动任务
        • 查询浏览器任务状态
        • 同步创建浏览器自动任务
      • Paper2Code
        • 创建paper2code任务(json传参)
        • 创建paper2code任务(form-data传参)
        • 查询paper2code任务
      • Paper2Poster
        • 创建paper2poster任务(json传参)
        • 创建paper2poster任务(form-data传参)
        • 查询paper2poster任务
      • LLMxMapReduce
        • 创建写作任务
        • 查询写作任务
      • LangExtract
        • 创建信息提取任务
        • 查看信息提取任务
      • Dots.OCR
        • 创建dots.ocr任务
        • 查看dots.ocr任务
      • MiniCPM
        • 创建MiniCPM-V 4.5任务
        • 查看MiniCPM-V 4.5任务
      • PDF翻译
        • 提交PDF翻译任务
        • 查询PDF翻译任务
    • Tavily
      • Search(搜索)
      • Extract(提取网页)
    • SerpApi
      • Search(搜索)
      • Search(新闻搜索)
      • Search(图片搜索)
      • Search(图搜图)
      • Search(视频搜索)
      • Search(学术搜索)
      • Search(专利搜索)
      • Search(百度搜索)
    • Search1API
      • Search(搜索)
      • News(新闻)
      • Crawl(爬取)
      • Sitemap(网站地图)
      • Trending(热门趋势)
    • Exa
      • Search(搜索)
      • Contents(获取内容)
      • Answer(回答)
    • 博查AI
      • web-search(普通搜索)
      • ai-search(AI搜索)
    • Doc2x
      • V2版本
        • PDF(上传接口-异步)
        • Status(查看处理状态)
        • Parse(请求导出文件-异步)
        • Result(获取导出结果)
      • V1版本(已废弃)
        • PDF(PDF转MD格式)
        • PDF-Async(PDF异步转换格式)
        • IMG(IMG转MD格式)
        • IMG(IMG异步转换格式)
        • Status(查看状态)
        • Export(导出文件)
    • Glif
      • Glif(Bot平台)
    • Jina
      • Reader(网页转md格式)
      • Search(网络搜索)
      • Grounding(事实求证)
      • Classify(内容分类)
      • Reader(网页转md格式) Copy
    • DeepL
      • Chat(任何语言翻译为英文)
      • Chat(任何语言翻译为中文)
      • Chat(任何语言翻译为日文)
      • Translate(翻译成任何语言)
    • RSSHub
      • RSSHub(信息订阅)
    • 流光卡片
      • saveImg(卡片生成)
    • 有道
      • Youdao(有道翻译)
    • Mistral
      • OCR(PDF解析)
    • Firecrawl
      • Scrape(页面抓取)
      • Batch Scrape(批量抓取)
      • Scrape Status(获取结果)
      • Scrape Errors(获取错误)
      • Map(网站地图)
      • Search(搜索)
    • 秘塔搜索
      • Search(搜索)
      • Reader(抓取网页)
      • Chat(问答)
    • MinerU
      • 创建PDF解析任务(开源部署版)
      • 查看PDF解析任务(开源部署版)
      • 创建PDF解析任务(官方免费版)
      • 查看PDF解析任务(官方免费版)
    • 智谱Agent
      • 智谱PPT制作
      • 智谱导出PPT
      • 上传文件
    • Unifuncs
      • Web-Search(实时搜索)
      • Web-Reader(网页读取)
    • Sophnet
      • 图片OCR
      • 文档识别
    • Perplexity
      • Search(搜索)
    • 豆包
      • Doubao-Seed-Translation
    • Aminer
      • 数据获取
        • 期刊论文
        • 机构详情
        • 专利详情
        • 论文详情
        • 学者画像
        • 学者详情
        • 论文引用
        • 学者论文
        • 学者专利
        • 论文信息
        • 专利信息
        • 机构论文
        • 机构学者
        • 机构专利
        • 期刊详情
      • 数据消歧
        • 机构消歧pro
        • 机构消歧
      • 数据查询
        • 期刊搜索
        • 机构搜索
        • 专利搜索
        • 论文搜索
        • 论文搜索pro
        • 学者搜索
      • 学术问答
        • 论文问答搜索
        • AMiner沉思
      • 组合接口
        • 根据条件获取论文详情
          GET
        • 论文搜索接口
          GET
        • 论文批量查询接口
          GET
  • RAG相关
    • OpenAI
      • Embeddings(向量生成)
    • Jina
      • Embeddings(向量生成)
      • Rerank(重排序)
      • Rerank(多模态重排序)
      • Tokenizer(文本切片)
    • 国产模型
      • Embeddings(智谱)
      • Embeddings(智源BAAI)
      • Embeddings(百川)
      • Embeddings(有道)
      • Rerank(有道)
      • Rerank(智源BAAI)
    • 302.AI
      • Chat(知识库对话)
      • Chat(OpenAI兼容格式)
      • Create(创建知识库)
      • Delete(删除知识库)
      • Upload(上传文件到知识库)
      • Delete(删除知识库的指定文件)
      • List(获取知识库列表)
      • Info(获取知识库详情)
      • Meta-Chunking(文本LLM切片)
      • Meta-Chunking(文件LLM切片)
    • 硅基流动
      • Embeddings
      • Rerank
    • Google
      • Embeddings(向量生成)
  • 工具API
    • AI Agent
      • Agent SSE响应接口
      • 查询任务状态
      • 创建OWL沙盒任务
    • AI视频素材创意站
      • Scripts(生成视频素材文案)
      • Terms(生成视频素材搜索词)
      • Videos(创建视频素材生成任务)
      • Tasks(获取视频任务进度)
    • AI论文写作
      • CO-STORM
        • 创建生成文章任务
        • 继续生成对话接口
        • 更新文章内容接口
        • 获取文章信息
      • 异步生成论文
      • 获取论文结果
    • AI播客制作
      • 异步生成播客文本
      • 查询生成播客文本任务状态
      • 异步生成播客音频
      • 查询生成播客音频任务状态
      • 获取支持的音色信息
    • AI文案助手
      • 获取工具列表
      • 生成文案
    • AI视频深度翻译
      • 查询视频信息
      • 视频下载
      • 分离视频音轨
      • 音频人声分离与转录
      • 字幕精细翻译
      • 视频烧录
      • 原声克隆
      • 查询任务状态
      • 获取视频链接指定帧
    • AI文档编辑器
      • 生成长文大纲
      • 生成文章内容
    • 网页数据提取工具
      • 生成Schema
      • 创建提取任务
      • 查询提取进度
    • AI提示词专家
      • 提示词优化
      • 图片提示词生成
      • 创建spo提示词优化任务
      • 查询spo提示词优化结果
    • AI 3D建模
      • 3D模型文件类型转换
    • AI搜索大师3.0
      • AI搜索
    • AI矢量图生成
      • SVG转视频
    • AI答题机
      • 答题
    • AI PPT制作
      • AI PPT接口使用说明
      • 一键生成PPT接口
      • 文件解析
      • 生成大纲
      • 生成大纲内容
      • 获取模板选项
      • 生成PPT接口(同步接口)
      • 加载PPT数据
      • 生成PPT接口(异步接口)
      • 异步查询生成PPT状态
      • 下载PPT
      • 新增/更新自定义PPT模板
      • 分页查询 PPT 模板
    • AI学术论文搜索
      • arxiv论文搜索
      • 谷歌论文搜索
    • 网站一键部署
      • 2025.5.15 新增md格式支持(md自动转换成html)
      • 创建托管网页(form表单传参接口)
      • 创建托管网页(json传参接口)
      • 创建托管网页(二进制传参接口)
      • 查询API Key下的托管项目列表
      • 删除部署的网页
    • AI头像制作
      • 生成头像(json传参示例)
      • 生成头像(form-data传参示例)
    • AI卡片生成
      • 生成知识卡片
      • 生成海报
      • 生成哲理卡片
      • 生成哲学引用语录
    • AI图像创意站
      • 开启异步请求示例(推荐使用异步请求生成图片,生成图片的模型耗时比较久,使用异步可以减少请求超时问题)
      • 请求使用示例
        • 基础文生图(可选提示词优化)
        • 风格修改
        • 英文单词卡片
        • 可视化菜谱
        • 物理破坏效果卡片
        • 产品模特图
        • 护照印章生成
        • 主题键帽场景生成
        • 低多边形
        • 字体排印
        • 雕塑生成
        • 等距视角微缩场景生成
        • 摊开古书微缩场景生成
        • 城市等轴测视图生成
        • 泡罩药片食物生成
        • Q版3D人物生成
        • 立体浮雕纸雕风格生成
        • 改变人物年龄
        • 可动人偶生成
        • 3D头像姿势生成
        • 粘土风格生成
        • 3D立体模型生成
        • 人物角色双重曝光
        • 手绘风格信息图卡片
        • 吉卜力
        • 乐高收藏品
        • 水晶球
        • 微观世界
        • 贴纸设计
        • 手帐笔记
        • 云朵艺术
        • 迷你3D建筑
        • 虚构推文截图提示词优化
        • 可爱珐琅别针图
        • 超写实手办图
        • 品牌药丸图
        • 原创商品图
        • 字母盒子
        • 塑料垃圾袋
        • 3D卷轴迷你场景
        • 剪影艺术
        • 彩色矢量艺术海报
        • 复古宣传海报
        • 时尚杂志封面
        • 迷你倾斜移轴景观
        • Q版钥匙扣
        • 3D微型店铺
        • 指甲绘画
        • T恤上的别针
        • 乐高城市景点
        • 单词与图形融合
        • 3D镀铬徽章
        • 动物地标自拍
        • 定制动漫手办
        • 磨砂玻璃后的虚实剪影
        • 生锈的铁板
        • 流墨
        • 霓虹涂鸦
        • 抓娃娃机
        • 创意极简广告
        • 玻璃碎片
        • 创意抽绳袋
        • 花卉雕塑
        • 多肉花盆
        • 复古科幻书封面
        • 金币
        • 情绪糕点
        • 趣味气球
        • 怪物字母
        • 玩具盒中的城市
        • 3D玩偶
        • 服装平铺图
        • 动漫转真人
      • 获取模板列表
      • 生成创意图片
      • 异步获取图片生成结果
    • AI数字人
      • 提交视频处理请求
      • 查询提取音频任务信息
      • 查询视频合并任务信息
      • 视频合并webhook请求示例
      • 提取音频webhook请求示例
  • 帮助中心
    • HTTP状态码及其含义
    • 图片翻译支持语言
    • 有道翻译支持语言
  1. 组合接口

根据条件获取论文详情

正式环境
https://api.302.ai
正式环境
https://api.302.ai
GET
https://api.302.ai
/aminer/gateway/open_platform/api/paper/platform/allpubs/more/detail/by/ts/org/venue
价格:0.04 PTC/次

请求参数

Query 参数

Header 参数

请求示例代码

Shell
JavaScript
Java
Swift
Go
PHP
Python
HTTP
C
C#
Objective-C
Ruby
OCaml
Dart
R
请求示例请求示例
Shell
JavaScript
Java
Swift
curl --location --request GET 'https://api.302.ai/aminer/gateway/open_platform/api/paper/platform/allpubs/more/detail/by/ts/org/venue?venue_id=5ea5dedbedb6e7d53c04229c&year=2022' \
--header 'Authorization: Bearer '

返回响应

🟢200成功
application/json
Body

示例
{
    "code": 200,
    "data": [
        {
            "_id": "5e68c5f591e0116bed041477",
            "abstract": "Geologic fractures such as joints and faults are central to many problems in energy geotechnics. Notable examples include hydraulic fracturing, injection-induced earthquakes, and geologic carbon storage. Nevertheless, our current capabilities for simulating the development and evolution of geologic fractures in these problems are still insufficient in terms of efficiency and accuracy. Recently, phase-field modeling has emerged as an efficient numerical method for fracture simulation which does not require any algorithm for tracking the geometry of fracture. However, existing phase-field models of fracture neglected two distinct characteristics of geologic fractures, namely, the pressure-dependence and frictional contact. To overcome these limitations, new phase-field models have been developed and described in this paper. The new phase-field models are demonstrably capable of simulating pressure-dependent, frictional fractures propagating in arbitrary directions, which is a notoriously challenging task.",
            "authors": [
                {
                    "_id": "61b2dda36750f8276edd3a4e",
                    "name": "Jinhyun Choo",
                    "org": "Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon, South Korea"
                }
            ],
            "doi": "10.1016/j.cma.2020.113265",
            "keywords": [
                "fracture",
                "phase-field model",
                "numerical analysis",
                "computational mechanics",
                "geomaterials"
            ],
            "title": "A Phase-Field Model of Frictional Shear Fracture in Geologic Materials",
            "venue": {
                "raw": "FRONTIERS IN BUILT ENVIRONMENT"
            },
            "volume": "10",
            "year": 2024
        },
        {
            "_id": "6221834e5aee126c0f23c2a5",
            "abstract": "In this paper, we introduce a shallow (one-hidden-layer) physics-informed neural network for solving partial differential equations on static and evolving surfaces. For the static surface case, with the aid of level set function, the surface normal and mean curvature used in the surface differential expressions can be computed easily. So instead of imposing the normal extension constraints used in literature, we write the surface differential operators in the form of traditional Cartesian differential operators and use them in the loss function directly. We perform a series of performance study for the present methodology by solving Laplace-Beltrami equation and surface diffusion equation on complex static surfaces. With just a moderate number of neurons used in the hidden layer, we are able to attain satisfactory prediction results. Then we extend the present methodology to solve the advection-diffusion equation on an evolving surface with given velocity. To track the surface, we additionally introduce a prescribed hidden layer to enforce the topological structure of the surface and use the network to learn the homeomorphism between the surface and the prescribed topology. The proposed network structure is designed to track the surface and solve the equation simultaneously. Again, the numerical results show comparable accuracy as the static cases. As an application, we simulate the surfactant transport on the droplet surface under shear flow and obtain some physically plausible results.",
            "authors": [
                {
                    "_id": "53f39148dabfae4b34a56846",
                    "name": "Wei-Fan Hu",
                    "org": "Natl Cent Univ, Dept Math, Taoyuan 32001, Taiwan"
                },
                {
                    "_id": "6525ed3d55b3f8ac46f8ce95",
                    "name": "Yi-Jun Shih",
                    "org": "Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan"
                },
                {
                    "_id": "5631de9845ce1e5968c3f3d0",
                    "name": "Te-Sheng Lin",
                    "org": "Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan"
                },
                {
                    "_id": "53f47e76dabfaec09f299f92",
                    "name": "Ming-Chih Lai",
                    "org": "Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan"
                }
            ],
            "doi": "10.1016/j.cma.2023.116486",
            "issn": "0045-7825",
            "keywords": [
                "Physics-informed neural networks",
                "Surface partial differential equations",
                "Laplace-Beltrami operator",
                "Shallow neural network",
                "Evolving surfaces"
            ],
            "title": "A Shallow Physics-Informed Neural Network for Solving Partial Differential Equations on Surfaces",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "418",
            "year": 2024
        },
        {
            "_id": "623155ac5aee126c0f2ba59f",
            "abstract": "While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior. In this work we attribute this shortcoming to the inability of existing PINNs formulations to respect the spatio-temporal causal structure that is inherent to the evolution of physical systems. We argue that this is a fundamental limitation and a key source of error that can ultimately steer PINN models to converge towards erroneous solutions. We address this pathology by proposing a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training. We demonstrate that this simple modification alone is enough to introduce significant accuracy improvements, as well as a practical quantitative mechanism for assessing the convergence of a PINNs model. We provide state-of-the-art numerical results across a series of benchmarks for which existing PINNs formulations fail, including the chaotic Lorenz system, the Kuramoto-Sivashinsky equation in the chaotic regime, and the Navier-Stokes equations in the turbulent regime. To the best of our knowledge, this is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity.",
            "authors": [
                {
                    "_id": "645320c8ca4e0609eedd482c",
                    "name": "Sifan Wang",
                    "org": "Univ Penn, Grad Grp Appl Math & Computat Sci, Philadelphia, PA 19104 USA"
                },
                {
                    "_id": "65ed902f0b6735f4855eba41",
                    "name": "Shyam Sankaran",
                    "org": "Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA"
                },
                {
                    "_id": "6145a32d9e795e1aeca7521d",
                    "name": "Paris Perdikaris",
                    "org": "Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA"
                }
            ],
            "doi": "10.1016/j.cma.2024.116813",
            "issn": "0045-7825",
            "keywords": [
                "Deep learning",
                "Partial differential equations",
                "Computational physics",
                "Chaotic systems"
            ],
            "title": "Respecting Causality is All You Need for Training Physics-Informed Neural Networks",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "421",
            "year": 2024
        },
        {
            "_id": "629ec1f85aee126c0fb6f6f3",
            "abstract": "Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shapeoptimization via the method of mappings. In both cases, an appropriate mesh motion techniqueis required. The choice is typically based on heuristics, e.g., the solution operators of partialdifferential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter,which shows good numerical performance for large displacements, is expensive. Moreover,from a continuous perspective, choosing the mesh motion technique is to a certain extentarbitrary and has no influence on the physically relevant quantities. Therefore, we considerapproaches inspired by machine learning. We present a hybrid PDE-NN approach, where theneural network (NN) serves as parameterization of a coefficient in a second order nonlinearPDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neuralnetwork architecture. Moreover, we present an approach where a neural network corrects theharmonic extension such that the boundary displacement is not changed. In order to avoidtechnical difficulties in coupling finite element and machine learning software, we work witha splitting of the monolithic FSI system into three smaller subsystems. This allows to solve themesh motion equation in a separate step. We assess the quality of the learned mesh motiontechnique by applying it to a FSI benchmark problem. In addition, we discuss generalizabilityand computational cost of the learned mesh motion operators",
            "authors": [
                {
                    "_id": "64c672ac75f2d36822f045ad",
                    "name": "Johannes Haubner",
                    "org": "Karl Franzens Univ Graz, Inst Germanist, Univ Pl 3, A-8010 Graz, Austria"
                },
                {
                    "name": "Ottar Hellan",
                    "org": "Simula Res Lab, Kristian Augusts Gate 23, N-0164 Oslo, Norway"
                },
                {
                    "_id": "64352fa0f2699869fc1e1acd",
                    "name": "Marius Zeinhofer",
                    "org": "Simula Res Lab, Kristian Augusts Gate 23, N-0164 Oslo, Norway"
                },
                {
                    "_id": "62e477a4d9f204418d685b48",
                    "name": "Miroslav Kuchta",
                    "org": "Simula Res Lab, Kristian Augusts Gate 23, N-0164 Oslo, Norway"
                }
            ],
            "doi": "10.1016/j.cma.2024.116890",
            "issn": "0045-7825",
            "keywords": [
                "Fluid-structure interaction",
                "Neural networks",
                "Partial differential equations",
                "Hybrid PDE-NN",
                "Mesh moving techniques",
                "Data-driven approaches"
            ],
            "title": "Learning Mesh Motion Techniques with Application to Fluid-Structure Interaction",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "424",
            "year": 2024
        },
        {
            "_id": "6321467290e50fcafdb9bac6",
            "abstract": "We present and analyze a methodology for numerical homogenization of spatial networks models, e.g. heat conduction and linear deformation in large networks of slender objects, such as paper fibers. The aim is to construct a coarse model of the problem that maintains high accuracy also on the micro-scale. By solving decoupled problems on local subgraphs we construct a low dimensional subspace of the solution space with good approximation properties. The coarse model of the network is expressed by a Galerkin formulation and can be used to perform simulations with different source and boundary data, at a low computational cost. We prove optimal convergence to the micro-scale solution of the proposed method under mild assumptions on the homogeneity, connectivity, and locality of the network on the coarse scale. The theoretical findings are numerically confirmed for both scalar-valued (heat conduction) and vector-valued (linear deformation) models.",
            "authors": [
                {
                    "_id": "53f432abdabfaeecd6939333",
                    "name": "F. Edelvik",
                    "org": "Fraunhofer Chalmers Ctr, Computat Engn & Design, Chalmers Sci Pk, S-41288 Gothenburg, Sweden"
                },
                {
                    "_id": "64b7dc9284100e3215e9afa9",
                    "name": "M. Gortz",
                    "org": "Fraunhofer Chalmers Ctr, Computat Engn & Design, Chalmers Sci Pk, S-41288 Gothenburg, Sweden"
                },
                {
                    "_id": "641140cd1d2dbd0c2a38abb9",
                    "name": "F. Hellman",
                    "org": "Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden"
                },
                {
                    "_id": "640471d7eef5911ab846ec46",
                    "name": "G. Kettil",
                    "org": "Fraunhofer Chalmers Ctr, Computat Engn & Design, Chalmers Sci Pk, S-41288 Gothenburg, Sweden"
                },
                {
                    "_id": "53f47788dabfaefedbbb24e7",
                    "name": "A. Malqvist",
                    "org": "Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden"
                }
            ],
            "doi": "10.1016/j.cma.2023.116593",
            "issn": "0045-7825",
            "keywords": [
                "Algebraic connectivity",
                "Discrete model",
                "Multiscale method",
                "Network model",
                "Localized orthogonal decomposition",
                "Upscaling"
            ],
            "title": "Numerical Homogenization of Spatial Network Models",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "418",
            "year": 2024
        },
        {
            "_id": "6327dda690e50fcafd67df37",
            "abstract": "Nonlinear balanced truncation is a model order reduction technique that reduces the dimension of nonlinear systems in a manner that accounts for either open- or closed -loop observability and controllability aspects of the system. A computational challenges that has so far prevented its deployment on large-scale systems is that the energy functions required for characterization of controllability and observability are solutions of various high -dimensional Hamilton-Jacobi- (Bellman) equations, which are computationally intractable in high dimensions. This work proposes a unifying and scalable approach to this challenge by considering a Taylor -series -based approximation to solve a class of parametrized Hamilton-Jacobi-Bellman equations that are at the core of nonlinear balancing. The value of a formulation parameter provides either open -loop balancing or a variety of closed -loop balancing options. To solve for the coefficients of Taylorseries approximations to the energy functions, the presented method derives a linear tensor system and heavily utilizes it to numerically solve structured linear systems with billions of unknowns. The strength and scalability of the algorithm is demonstrated on two semi-discretized partial differential equations, namely the Burgers and the Kuramoto-Sivashinsky equations.",
            "authors": [
                {
                    "_id": "63ae510f7d3ea0c54a781a8d",
                    "name": "Boris Kramer",
                    "org": "Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA"
                },
                {
                    "_id": "53f42bbadabfaedce54ab757",
                    "name": "Serkan Gugercin",
                    "org": "Virginia Tech, Dept Math, Blacksburg, VA 24061 USA"
                },
                {
                    "_id": "53f438dfdabfaedd74db81ad",
                    "name": "Jeff Borggaard",
                    "org": "Virginia Tech, Dept Math, Blacksburg, VA 24061 USA"
                },
                {
                    "_id": "6524aeba55b3f8ac4642a4e3",
                    "name": "Linus Balicki",
                    "org": "Virginia Tech, Dept Math, Blacksburg, VA 24061 USA"
                }
            ],
            "doi": "10.1016/j.cma.2024.117011",
            "issn": "0045-7825",
            "keywords": [
                "Reduced-order modeling",
                "Balanced truncation",
                "Nonlinear manifolds",
                "Hamilton-Jacobi-Bellman equation",
                "Nonlinear systems"
            ],
            "title": "Scalable Computation of Energy Functions for Nonlinear Balanced Truncation",
            "venue": {
                "raw": "Computer Methods in Applied Mechanics and Engineering"
            },
            "volume": "427",
            "year": 2024
        },
        {
            "_id": "633269fb90e50fcafd4913e6",
            "abstract": "In recent years operator networks have emerged as promising deep learning tools for approximating the solution to partial differential equations (PDEs). These networks map input functions that describe material properties, forcing functions and boundary data to the solution of a PDE. This work describes a new architecture for operator networks that mimics the form of the numerical solution obtained from an approximate variational or weak formulation of the problem. The application of these ideas to a generic elliptic PDE leads to a variationally mimetic operator network (VarMiON). Like the conventional Deep Operator Network (DeepONet) the VarMiON is also composed of a sub-network that constructs the basis functions for the output and another that constructs the coefficients for these basis functions. However, in contrast to the DeepONet, the architecture of these sub-networks in the VarMiON is precisely determined. An analysis of the error in the VarMiON solution reveals that it contains contributions from the error in the training data, the training error, the quadrature error in sampling input and output functions, and a \"covering error\" that measures the distance between the test input functions and the nearest functions in the training dataset. It also depends on the stability constants for the exact solution operator and its VarMiON approximation. The application of the VarMiON to a canonical elliptic PDE and a nonlinear PDE reveals that for approximately the same number of network parameters, on average the VarMiON incurs smaller errors than a standard DeepONet and a recently proposed multiple-input operator network (MIONet). Further, its performance is more robust to variations in input functions, the techniques used to sample the input and output functions, the techniques used to construct the basis functions, and the number of input functions.",
            "authors": [
                {
                    "_id": "637254afec88d95668ccf55f",
                    "name": "Dhruv Patel",
                    "org": "Stanford Univ, Dept Mech Engn, Stanford, CA USA"
                },
                {
                    "_id": "62e48a25d9f204418d6a0ba6",
                    "name": "Deep Ray",
                    "org": "Univ Maryland, Dept Math, College Pk, MD USA"
                },
                {
                    "_id": "63af888784ab04bd7fb65276",
                    "name": "Michael R. A. Abdelmalik",
                    "org": "Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands"
                },
                {
                    "_id": "53f430ebdabfaeb1a7bb80a6",
                    "name": "Thomas J. R. Hughes",
                    "org": "Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX USA"
                },
                {
                    "_id": "53f436bfdabfaedce553252c",
                    "name": "Assad A. Oberai",
                    "org": "Univ Southern Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90007 USA"
                }
            ],
            "doi": "10.1016/j.cma.2023.116536",
            "issn": "0045-7825",
            "keywords": [
                "Variational formulation",
                "Deep neural operator",
                "Deep operator network",
                "Error analysis"
            ],
            "title": "Variationally Mimetic Operator Networks",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "419",
            "year": 2024
        },
        {
            "_id": "6344dee690e50fcafd24e879",
            "abstract": "Hybrid quantum mechanics/molecular mechanics (QM/MM) models play a pivotal role in molecular simulations. These models provide a balance between accuracy, surpassing pure MM models, and computational efficiency, offering advantages over pure QM models. Adaptive approaches have been developed to further improve this balance by allowing on -the -fly selection of the QM and MM subsystems as necessary. We propose a novel and robust adaptive QM/MM method for practical material defect simulations. To ensure mathematical consistency with the QM reference model, we employ machine -learning interatomic potentials (MLIPs) as the MM models (Chen et al., 2022 and Grigorev et al., 2023). Our adaptive QM/MM method utilizes a residual -based error estimator that provides both upper and lower bounds for the approximation error, thus indicating its reliability and efficiency. Furthermore, we introduce a novel adaptive algorithm capable of anisotropically updating the QM/MM partitions. This update is based on the proposed residual -based error estimator and involves solving a free interface motion problem, which is efficiently achieved using the fast marching method. We demonstrate the robustness of our approach via numerical tests on a range of crystalline defects comprising edge dislocations, cracks and di-interstitials.",
            "authors": [
                {
                    "_id": "64bfb90975f2d368227b888d",
                    "name": "Yangshuai Wang",
                    "org": "Univ British Columbia, 1984 Math Rd, Vancouver, BC, Canada"
                },
                {
                    "_id": "53f31d4edabfae9a84441861",
                    "name": "James R. Kermode",
                    "org": "Univ Warwick, Warwick Ctr Predict Modelling, Sch Engn, Coventry CV4 7AL, England"
                },
                {
                    "_id": "619325ac6750f83ab8797ded",
                    "name": "Christoph Ortner",
                    "org": "Univ British Columbia, 1984 Math Rd, Vancouver, BC, Canada"
                },
                {
                    "_id": "542a4f8cdabfae61d4968d4d",
                    "name": "Lei Zhang",
                    "org": "Shanghai Jiao Tong Univ, Inst Nat Sci, Sch Math Sci, Shanghai 200240, Peoples R China"
                }
            ],
            "doi": "10.1016/j.cma.2024.117097",
            "issn": "0045-7825",
            "keywords": [
                "QM/MM coupling",
                "Machine-learned interatomic potentials",
                "A posteriori error estimate",
                "Adaptive algorithm",
                "Crystal defects"
            ],
            "title": "A Posteriori Error Estimate and Adaptivity for QM/MM Models of Defects",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "428",
            "year": 2024
        },
        {
            "_id": "6348d42590e50fcafd5530ab",
            "abstract": "We present a rate-independent model for isotropic elastic–orthotropic plastic material behaviour in a hyper-elasto-plastic setting at finite strains, which is based on a covariant formulation that includes plastic-deformation-induced evolution of orthotropy. The model relies on a treatment by Lu and Papadopoulos, who made use of the postulate of covariance for an anisotropic elasto-plastic solid and derived constitutive equations of evolving anisotropies at finite strains. The latter is tantamount to the notion of plastic spin. This treatment does not rely on a multiplicative decomposition of the deformation gradient. We test our model on in-plane sheet-metal forming processes, which are governed by the evolution of pre-existing preferred material orientations. Hence, we advocate an orthotropic yield criterion directed by evolving structural tensors to describe this material behaviour. Our formulation yields two key findings. Firstly, the covariant formulation of plasticity yields suitable evolution equations for the structural tensors characterising the symmetry group of the orthotropic yield function. Secondly, the constitutive equations for the plastic variables and the structural tensors, which are both symmetric second-order tensors, give results that are in good agreement with experimental and numerical findings from in-plane sheet forming processes.",
            "authors": [
                {
                    "_id": "53f44753dabfaee43ec816d5",
                    "name": "Christian C. Celigoj",
                    "org": "Graz Univ Technol, Inst Strength Mat, Kopernikusgasse 24-I, A-8010 Graz, Austria"
                },
                {
                    "_id": "53f380c2dabfae4b349f707b",
                    "name": "Manfred H. Ulz",
                    "org": "Graz Univ Technol, Inst Strength Mat, Kopernikusgasse 24-I, A-8010 Graz, Austria"
                }
            ],
            "doi": "10.1016/j.cma.2022.115567",
            "issn": "0022-5096",
            "keywords": [
                "Postulate of covariance",
                "Orthotropy",
                "Evolving anisotropy",
                "Plastic spin",
                "Pulp fibres",
                "Natural fibres"
            ],
            "title": "An Orthotropic Plasticity Model at Finite Strains with Plasticity-Induced Evolution of Orthotropy Based on a Covariant Formulation",
            "venue": {
                "raw": "JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS"
            },
            "volume": "193",
            "year": 2024
        },
        {
            "_id": "6348d44b90e50fcafd5557cc",
            "abstract": "A hydro-mechanical-damage fully coupled numerical method is developed for simulations of complicated quasi-brittle fracking in poroelastic media. A unified fluid continuity equation with crack-width dependent permeability, based on the Biot’s poroelastic theory, is used for simultaneous modeling of fluid flow in both fractures and porous media. The fluid pressure is coupled into the governing equations of the phase-field regularized cohesive zone model, which can automatically predict quasi-brittle multi-crack initiation, nucleation, and propagation without remeshing, crack tracking, or auxiliary fields as needed by other methods. An alternate minimization Newton–Raphson iterative algorithm is implemented within the finite element framework to solve the above three-fields coupled problem with nodal degrees of freedom of displacements, fluid pressures, and damages. The method is first validated by three problems with analytical solutions, a problem with experimental results, and a two-crack merging problem with numerical results in published literature, in terms of time evolutions of injected fluid pressures, crack widths and lengths, and final crack paths. Horizontal wellbore fracking problems with parallel hydraulic cracks and random natural fractures are then simulated, with the effects of spacing, number, and angle of perforations investigated in detail. It is found that the developed method is capable of modeling complex multi-crack fracking in both homogeneous media and heterogeneous media with natural fractures, and is thus promising for fracking design optimization of practical exploitation of shale gas and oil.",
            "authors": [
                {
                    "_id": "5614b61b45cedb3397a6310e",
                    "name": "Hui Li",
                    "org": "Wuhan Univ, Sch Civil Engn, Hubei Key Lab Geotech & Struct Safety, Wuhan 430027, Peoples R China"
                },
                {
                    "_id": "542a6a57dabfae2b4e10175d",
                    "name": "Zhenjun Yang",
                    "org": "Wuhan Univ, Sch Civil Engn, Hubei Key Lab Geotech & Struct Safety, Wuhan 430027, Peoples R China"
                },
                {
                    "_id": "56113f4f45ce1e596272d068",
                    "name": "Fengchen An",
                    "org": "China Univ Petr, Sch Safety & Ocean Engn, Beijing 102249, Peoples R China"
                },
                {
                    "_id": "53f42c7edabfaedce54b7e69",
                    "name": "Jianying Wu",
                    "org": "South China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou 510641, Peoples R China"
                }
            ],
            "doi": "10.1016/j.enggeo.2024.107502",
            "issn": "0013-7952",
            "keywords": [
                "Phase field model",
                "Dynamic fracture",
                "Quasi-brittle fracture",
                "Hydraulic fracturing",
                "Pulsing fracking",
                "Horizontal well"
            ],
            "title": "Simulation of Dynamic Pulsing Fracking in Poroelastic Media by a Hydro-Damage-mechanical Coupled Cohesive Phase Field Model",
            "venue": {
                "raw": "ENGINEERING GEOLOGY"
            },
            "volume": "334",
            "year": 2024
        }
    ],
    "log_id": "33Mf4NbmpwKQI9oLH5EQ9WmYp4b",
    "msg": "",
    "success": true,
    "total": 10
}
修改于 2025-09-30 01:23:06
上一页
AMiner沉思
下一页
论文搜索接口
Built with